Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weight-Covariance Alignment for Adversarially Robust Neural Networks (2010.08852v3)

Published 17 Oct 2020 in cs.LG, cs.CR, and cs.CV

Abstract: Stochastic Neural Networks (SNNs) that inject noise into their hidden layers have recently been shown to achieve strong robustness against adversarial attacks. However, existing SNNs are usually heuristically motivated, and often rely on adversarial training, which is computationally costly. We propose a new SNN that achieves state-of-the-art performance without relying on adversarial training, and enjoys solid theoretical justification. Specifically, while existing SNNs inject learned or hand-tuned isotropic noise, our SNN learns an anisotropic noise distribution to optimize a learning-theoretic bound on adversarial robustness. We evaluate our method on a number of popular benchmarks, show that it can be applied to different architectures, and that it provides robustness to a variety of white-box and black-box attacks, while being simple and fast to train compared to existing alternatives.

Citations (21)

Summary

We haven't generated a summary for this paper yet.