Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Differential forms on smooth operadic algebras (2010.08815v2)

Published 17 Oct 2020 in math.KT, math.QA, math.RA, and math.RT

Abstract: The classical Hochschild--Kostant--Rosenberg (HKR) theorem computes the Hochschild homology and cohomology of smooth commutative algebras. In this paper, we generalise this result to other kinds of algebraic structures. Our main insight is that producing HKR isomorphisms for other types of algebras is directly related to computing quasi-free resolutions in the category of left modules over an operad; we establish that an HKR-type result follows as soon as this resolution is diagonally pure. As examples we obtain a permutative and a pre-Lie HKR theorem for smooth commutative and smooth brace algebras, respectively. We also prove an HKR theorem for operads obtained from a filtered distributive law, which recovers, in particular, all the aspects of the classical HKR theorem. Finally, we show that this property is Koszul dual to the operadic PBW property defined by V. Dotsenko and the second author (1804.06485).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.