Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stable homology of Lie algebras of derivations and homotopy invariants of wheeled operads (2311.18594v5)

Published 30 Nov 2023 in math.AT, math.CT, and math.KT

Abstract: We prove a theorem that computes, for any augmented operad $\mathcal{O}$, the stable homology of the Lie algebra of derivations of the free algebra $\mathcal{O}(V)$ with twisted bivariant coefficients (here stabilization occurs as $\dim(V)\to\infty$) out of the homology of the wheeled bar construction of $\mathcal{O}$; this can further be used to prove uniform mixed representation stability for the homology of the positive part of that Lie algebra with constant coefficients. This result generalizes both the Loday-Quillen-Tsygan theorem on the homology of the Lie algebra of infinite matrices and the Fuchs stability theorem for the homology of the Lie algebra of vector fields. We also prove analogous theorems for the Lie algebras of derivations with constant and zero divergence, in which case one has to consider the wheeled bar construction of the wheeled completion of $\mathcal{O}$. Similarly to how cyclic homology of an algebra $A$ may be viewed as an additive version of the algebraic $K$-theory of $A$, our results hint at the additive $K$-theoretic nature of the wheeled bar construction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.