Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of Automatic Offloading Method in Mixed Offloading Destination Environment (2010.08009v2)

Published 15 Oct 2020 in cs.DC

Abstract: In recent years, utilization of heterogeneous hardware other than small core CPU such as GPU, FPGA or many core CPU is increasing. However, when using heterogeneous hardware, barriers of technical skills such as OpenMP, CUDA and OpenCL are high. Based on that, I have proposed environment-adaptive software that enables automatic conversion, configuration, and high performance operation of once written code, according to the hardware to be placed. However, including existing technologies, there has been no research to properly and automatically offload the mixed offloading destination environment such as GPU, FPGA and many core CPU. In this paper, as a new element of environment-adaptive software, I study a method for offloading applications properly and automatically in the environment where the offloading destination is mixed with GPU, FPGA and many core CPU. I evaluate the effectiveness of the proposed method in multiple applications.

Summary

We haven't generated a summary for this paper yet.