Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bi-GCN: Binary Graph Convolutional Network (2010.07565v2)

Published 15 Oct 2020 in cs.LG

Abstract: Graph Neural Networks (GNNs) have achieved tremendous success in graph representation learning. Unfortunately, current GNNs usually rely on loading the entire attributed graph into network for processing. This implicit assumption may not be satisfied with limited memory resources, especially when the attributed graph is large. In this paper, we pioneer to propose a Binary Graph Convolutional Network (Bi-GCN), which binarizes both the network parameters and input node features. Besides, the original matrix multiplications are revised to binary operations for accelerations. According to the theoretical analysis, our Bi-GCN can reduce the memory consumption by an average of ~30x for both the network parameters and input data, and accelerate the inference speed by an average of ~47x, on the citation networks. Meanwhile, we also design a new gradient approximation based back-propagation method to train our Bi-GCN well. Extensive experiments have demonstrated that our Bi-GCN can give a comparable performance compared to the full-precision baselines. Besides, our binarization approach can be easily applied to other GNNs, which has been verified in the experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Junfu Wang (10 papers)
  2. Yunhong Wang (115 papers)
  3. Zhen Yang (160 papers)
  4. Liang Yang (102 papers)
  5. Yuanfang Guo (19 papers)
Citations (50)