Schauder estimates for degenerate Lévy Ornstein-Ulhenbeck operators (2010.06704v1)
Abstract: We establish global Schauder estimates for integro-partial differential equations (IPDE) driven by a possibly degenerate L\'evy Ornstein-Uhlenbeck operator, both in the elliptic and parabolic setting, using some suitable anisotropic H\"older spaces. The class of operators we consider is composed by a linear drift plus a L\'evy operator that is comparable, in a suitable sense, with a possibly truncated stable operator. It includes for example, the relativistic, the tempered, the layered or the Lamperti stable operators. Our method does not assume neither the symmetry of the L\'evy operator nor the invariance for dilations of the linear part of the operator. Thanks to our estimates, we prove in addition the well-posedness of the considered IPDE in suitable functional spaces. In the final section, we extend some of these results to more general operators involving non-linear, space-time dependent drifts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.