Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Supervised Joint-Event-Extraction with Heterogeneous Information Networks (2010.06310v2)

Published 13 Oct 2020 in cs.CL

Abstract: Joint-event-extraction, which extracts structural information (i.e., entities or triggers of events) from unstructured real-world corpora, has attracted more and more research attention in natural language processing. Most existing works do not fully address the sparse co-occurrence relationships between entities and triggers, which loses this important information and thus deteriorates the extraction performance. To mitigate this issue, we first define the joint-event-extraction as a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities. Then, to incorporate the missing information in the aforementioned co-occurrence relationships, we propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of either triggers or entities based on the type distribution of each other. Moreover, since the connected entities and triggers naturally form a heterogeneous information network (HIN), we leverage the latent pattern along meta-paths for a given corpus to further improve the performance of our proposed method. To verify the effectiveness of our proposed method, we conduct extensive experiments on four real-world datasets as well as compare our method with state-of-the-art methods. Empirical results and analysis show that our approach outperforms the state-of-the-art methods in both entity and trigger extraction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.