Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tire Force Estimation in Intelligent Tires Using Machine Learning

Published 13 Oct 2020 in eess.SY and cs.SY | (2010.06299v4)

Abstract: The concept of intelligent tires has drawn attention of researchers in the areas of autonomous driving, advanced vehicle control, and artificial intelligence. The focus of this paper is on intelligent tires and the application of machine learning techniques to tire force estimation. We present an intelligent tire system with a tri-axial acceleration sensor, which is installed onto the inner liner of the tire, and Neural Network techniques for real-time processing of the sensor data. The accelerometer is capable of measuring the acceleration in x,y, and z directions. When the accelerometer enters the tire contact patch, it starts generating signals until it fully leaves it. Simultaneously, by using MTS Flat-Trac test platform, tire actual forces are measured. Signals generated by the accelerometer and MTS Flat-Trac testing system are used for training three different machine learning techniques with the purpose of online prediction of tire forces. It is shown that the developed intelligent tire in conjunction with machine learning is effective in accurate prediction of tire forces under different driving conditions. The results presented in this work will open a new avenue of research in the area of intelligent tires, vehicle systems, and tire force estimation.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.