Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification (2010.05995v2)

Published 12 Oct 2020 in cs.LG and cs.AI

Abstract: Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes, making fair assessment of classifiers a challenging task. Metrics such as Balanced Accuracy are commonly used to evaluate a classifier's prediction performance under such scenarios. However, these metrics fall short when classes vary in importance. In this paper, we propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances. Experiments with several state-of-the-art classifiers tested on real-world datasets from three different domains show the effectiveness of our framework - not only in evaluating and ranking classifiers, but also training them.

Citations (5)

Summary

We haven't generated a summary for this paper yet.