Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Encoder-Decoder CNN for Hair Removal in Dermoscopic Images (2010.05013v1)

Published 10 Oct 2020 in cs.CV and cs.AI

Abstract: The process of removing occluding hair has a relevant role in the early and accurate diagnosis of skin cancer. It consists of detecting hairs and restore the texture below them, which is sporadically occluded. In this work, we present a model based on convolutional neural networks for hair removal in dermoscopic images. During the network's training, we use a combined loss function to improve the restoration ability of the proposed model. In order to train the CNN and to quantitatively validate their performance, we simulate the presence of skin hair in hairless images extracted from publicly known datasets such as the PH2, dermquest, dermis, EDRA2002, and the ISIC Data Archive. As far as we know, there is no other hair removal method based on deep learning. Thus, we compare our results with six state-of-the-art algorithms based on traditional computer vision techniques by means of similarity measures that compare the reference hairless image and the one with hair simulated. Finally, a statistical test is used to compare the methods. Both qualitative and quantitative results demonstrate the effectiveness of our network.

Citations (4)

Summary

We haven't generated a summary for this paper yet.