Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hilbert valued fractionally integrated autoregressive moving average processes with long memory operators (2010.04399v3)

Published 9 Oct 2020 in math.FA, math.ST, and stat.TH

Abstract: Fractionally integrated autoregressive moving average (FIARMA) processes have been widely and successfully used to model and predict univariate time series exhibiting long range dependence. Vector and functional extensions of these processes have also been considered more recently. Here we study these processes by relying on a spectral domain approach in the case where the processes are valued in a separable Hilbert space H0. In this framework, the usual univariate long memory parameter d is replaced by a long memory operator D acting on H0, leading to a class of H0-valued FIARMA(D, p, q) processes, where p and q are the degrees of the AR and MA polynomials. When D is a normal operator, we provide a necessary and sufficient condition for the D-fractional integration of an H0-valued ARMA(p, q) process to be well defined. Then, we derive the best predictor for a class of causal FIARMA processes and study how this best predictor can be consistently estimated from a finite sample of the process. To this end, we provide a general result on quadratic functionals of the periodogram, which incidentally yields a result of independent interest. Namely, for any ergodic stationary process valued in H0 with finite second moment, the empirical autocovariance operator converges, in trace-norm, to the true autocovariance operator almost surely at each lag.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.