Papers
Topics
Authors
Recent
Search
2000 character limit reached

Texture-based Presentation Attack Detection for Automatic Speaker Verification

Published 8 Oct 2020 in cs.SD, cs.CV, cs.LG, and eess.AS | (2010.04038v1)

Abstract: Biometric systems are nowadays employed across a broad range of applications. They provide high security and efficiency and, in many cases, are user friendly. Despite these and other advantages, biometric systems in general and Automatic speaker verification (ASV) systems in particular can be vulnerable to attack presentations. The most recent ASVSpoof 2019 competition showed that most forms of attacks can be detected reliably with ensemble classifier-based presentation attack detection (PAD) approaches. These, though, depend fundamentally upon the complementarity of systems in the ensemble. With the motivation to increase the generalisability of PAD solutions, this paper reports our exploration of texture descriptors applied to the analysis of speech spectrogram images. In particular, we propose a common fisher vector feature space based on a generative model. Experimental results show the soundness of our approach: at most, 16 in 100 bona fide presentations are rejected whereas only one in 100 attack presentations are accepted.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.