Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abductive Knowledge Induction From Raw Data (2010.03514v2)

Published 7 Oct 2020 in cs.AI and cs.LG

Abstract: For many reasoning-heavy tasks involving raw inputs, it is challenging to design an appropriate end-to-end learning pipeline. Neuro-Symbolic Learning, divide the process into sub-symbolic perception and symbolic reasoning, trying to utilise data-driven machine learning and knowledge-driven reasoning simultaneously. However, they suffer from the exponential computational complexity within the interface between these two components, where the sub-symbolic learning model lacks direct supervision, and the symbolic model lacks accurate input facts. Hence, most of them assume the existence of a strong symbolic knowledge base and only learn the perception model while avoiding a crucial problem: where does the knowledge come from? In this paper, we present Abductive Meta-Interpretive Learning ($Meta_{Abd}$) that unites abduction and induction to learn neural networks and induce logic theories jointly from raw data. Experimental results demonstrate that $Meta_{Abd}$ not only outperforms the compared systems in predictive accuracy and data efficiency but also induces logic programs that can be re-used as background knowledge in subsequent learning tasks. To the best of our knowledge, $Meta_{Abd}$ is the first system that can jointly learn neural networks from scratch and induce recursive first-order logic theories with predicate invention.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wang-Zhou Dai (9 papers)
  2. Stephen H. Muggleton (15 papers)
Citations (44)