Dual Reconstruction: a Unifying Objective for Semi-Supervised Neural Machine Translation
Abstract: While Iterative Back-Translation and Dual Learning effectively incorporate monolingual training data in neural machine translation, they use different objectives and heuristic gradient approximation strategies, and have not been extensively compared. We introduce a novel dual reconstruction objective that provides a unified view of Iterative Back-Translation and Dual Learning. It motivates a theoretical analysis and controlled empirical study on German-English and Turkish-English tasks, which both suggest that Iterative Back-Translation is more effective than Dual Learning despite its relative simplicity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.