Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do all Roads Lead to Rome? Understanding the Role of Initialization in Iterative Back-Translation (2002.12867v1)

Published 28 Feb 2020 in cs.CL and cs.LG

Abstract: Back-translation provides a simple yet effective approach to exploit monolingual corpora in Neural Machine Translation (NMT). Its iterative variant, where two opposite NMT models are jointly trained by alternately using a synthetic parallel corpus generated by the reverse model, plays a central role in unsupervised machine translation. In order to start producing sound translations and provide a meaningful training signal to each other, existing approaches rely on either a separate machine translation system to warm up the iterative procedure, or some form of pre-training to initialize the weights of the model. In this paper, we analyze the role that such initialization plays in iterative back-translation. Is the behavior of the final system heavily dependent on it? Or does iterative back-translation converge to a similar solution given any reasonable initialization? Through a series of empirical experiments over a diverse set of warmup systems, we show that, although the quality of the initial system does affect final performance, its effect is relatively small, as iterative back-translation has a strong tendency to convergence to a similar solution. As such, the margin of improvement left for the initialization method is narrow, suggesting that future research should focus more on improving the iterative mechanism itself.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mikel Artetxe (52 papers)
  2. Gorka Labaka (15 papers)
  3. Noe Casas (10 papers)
  4. Eneko Agirre (53 papers)
Citations (5)