Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PRover: Proof Generation for Interpretable Reasoning over Rules (2010.02830v1)

Published 6 Oct 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Recent work by Clark et al. (2020) shows that transformers can act as 'soft theorem provers' by answering questions over explicitly provided knowledge in natural language. In our work, we take a step closer to emulating formal theorem provers, by proposing PROVER, an interpretable transformer-based model that jointly answers binary questions over rule-bases and generates the corresponding proofs. Our model learns to predict nodes and edges corresponding to proof graphs in an efficient constrained training paradigm. During inference, a valid proof, satisfying a set of global constraints is generated. We conduct experiments on synthetic, hand-authored, and human-paraphrased rule-bases to show promising results for QA and proof generation, with strong generalization performance. First, PROVER generates proofs with an accuracy of 87%, while retaining or improving performance on the QA task, compared to RuleTakers (up to 6% improvement on zero-shot evaluation). Second, when trained on questions requiring lower depths of reasoning, it generalizes significantly better to higher depths (up to 15% improvement). Third, PROVER obtains near perfect QA accuracy of 98% using only 40% of the training data. However, generating proofs for questions requiring higher depths of reasoning becomes challenging, and the accuracy drops to 65% for 'depth 5', indicating significant scope for future work. Our code and models are publicly available at https://github.com/swarnaHub/PRover

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Swarnadeep Saha (19 papers)
  2. Sayan Ghosh (58 papers)
  3. Shashank Srivastava (39 papers)
  4. Mohit Bansal (304 papers)
Citations (76)