Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TPAM: A Simulation-Based Model for Quantitatively Analyzing Parameter Adaptation Methods (2010.01877v1)

Published 5 Oct 2020 in cs.NE

Abstract: While a large number of adaptive Differential Evolution (DE) algorithms have been proposed, their Parameter Adaptation Methods (PAMs) are not well understood. We propose a Target function-based PAM simulation (TPAM) framework for evaluating the tracking performance of PAMs. The proposed TPAM simulation framework measures the ability of PAMs to track predefined target parameters, thus enabling quantitative analysis of the adaptive behavior of PAMs. We evaluate the tracking performance of PAMs of widely used five adaptive DEs (jDE, EPSDE, JADE, MDE, and SHADE) on the proposed TPAM, and show that TPAM can provide important insights on PAMs, e.g., why the PAM of SHADE performs better than that of JADE, and under what conditions the PAM of EPSDE fails at parameter adaptation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.