Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective Unsupervised Domain Adaptation with Adversarially Trained Language Models (2010.01739v1)

Published 5 Oct 2020 in cs.CL

Abstract: Recent work has shown the importance of adaptation of broad-coverage contextualised embedding models on the domain of the target task of interest. Current self-supervised adaptation methods are simplistic, as the training signal comes from a small percentage of \emph{randomly} masked-out tokens. In this paper, we show that careful masking strategies can bridge the knowledge gap of masked LLMs (MLMs) about the domains more effectively by allocating self-supervision where it is needed. Furthermore, we propose an effective training strategy by adversarially masking out those tokens which are harder to reconstruct by the underlying MLM. The adversarial objective leads to a challenging combinatorial optimisation problem over \emph{subsets} of tokens, which we tackle efficiently through relaxation to a variational lowerbound and dynamic programming. On six unsupervised domain adaptation tasks involving named entity recognition, our method strongly outperforms the random masking strategy and achieves up to +1.64 F1 score improvements.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Thuy-Trang Vu (23 papers)
  2. Dinh Phung (147 papers)
  3. Gholamreza Haffari (141 papers)
Citations (22)