Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning with Mixed Convolutional Network (2010.00717v2)

Published 1 Oct 2020 in cs.CV, cs.LG, and cs.RO

Abstract: Recent research has shown that map raw pixels from a single front-facing camera directly to steering commands are surprisingly powerful. This paper presents a convolutional neural network (CNN) to playing the CarRacing-v0 using imitation learning in OpenAI Gym. The dataset is generated by playing the game manually in Gym and used a data augmentation method to expand the dataset to 4 times larger than before. Also, we read the true speed, four ABS sensors, steering wheel position, and gyroscope for each image and designed a mixed model by combining the sensor input and image input. After training, this model can automatically detect the boundaries of road features and drive the robot like a human. By comparing with AlexNet and VGG16 using the average reward in CarRacing-v0, our model wins the maximum overall system performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.