Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metaphor Detection using Deep Contextualized Word Embeddings (2009.12565v1)

Published 26 Sep 2020 in cs.CL and cs.LG

Abstract: Metaphors are ubiquitous in natural language, and their detection plays an essential role in many natural language processing tasks, such as language understanding, sentiment analysis, etc. Most existing approaches for metaphor detection rely on complex, hand-crafted and fine-tuned feature pipelines, which greatly limit their applicability. In this work, we present an end-to-end method composed of deep contextualized word embeddings, bidirectional LSTMs and multi-head attention mechanism to address the task of automatic metaphor detection. Our method, unlike many other existing approaches, requires only the raw text sequences as input features to detect the metaphoricity of a phrase. We compare the performance of our method against the existing baselines on two benchmark datasets, TroFi, and MOH-X respectively. Experimental evaluations confirm the effectiveness of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shashwat Aggarwal (3 papers)
  2. Ramesh Singh (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.