Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on the Impact of Deep Parameters on Mobile App Energy Usage (2009.12156v2)

Published 22 Sep 2020 in cs.SE

Abstract: Improving software performance through configuration parameter tuning is a common activity during software maintenance. Beyond traditional performance metrics like latency, mobile app developers are interested in reducing app energy usage. Some mobile apps have centralized locations for parameter tuning, similar to databases and operating systems, but it is common for mobile apps to have hundreds of parameters scattered around the source code. The correlation between these "deep" parameters and app energy usage is unclear. Researchers have studied the energy effects of deep parameters in specific modules, but we lack a systematic understanding of the energy impact of mobile deep parameters. In this paper we empirically investigate this topic, combining a developer survey with systematic energy measurements. Our motivational survey of 25 Android developers suggests that developers do not understand, and largely ignore, the energy impact of deep parameters. To assess the potential implications of this practice, we propose a deep parameter energy profiling framework that can analyze the energy impact of deep parameters in an app. Our framework identifies deep parameters, mutates them based on our parameter value selection scheme, and performs reliable energy impact analysis. Applying the framework to 16 popular Android apps, we discovered that deep parameter-induced energy inefficiency is rare. We found only 2 out of 1644 deep parameters for which a different value would significantly improve its app's energy efficiency. A detailed analysis found that most deep parameters have either no energy impact, limited energy impact, or an energy impact only under extreme values. Our study suggests that it is generally safe for developers to ignore the energy impact when choosing deep parameter values in mobile apps.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Qiang Xu (129 papers)
  2. James C. Davis (60 papers)
  3. Y. Charlie Hu (14 papers)
  4. Abhilash Jindal (2 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.