Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cloud Cover Nowcasting with Deep Learning (2009.11577v3)

Published 24 Sep 2020 in cs.CV, cs.AI, and cs.LG

Abstract: Nowcasting is a field of meteorology which aims at forecasting weather on a short term of up to a few hours. In the meteorology landscape, this field is rather specific as it requires particular techniques, such as data extrapolation, where conventional meteorology is generally based on physical modeling. In this paper, we focus on cloud cover nowcasting, which has various application areas such as satellite shots optimisation and photovoltaic energy production forecast. Following recent deep learning successes on multiple imagery tasks, we applied deep convolutionnal neural networks on Meteosat satellite images for cloud cover nowcasting. We present the results of several architectures specialized in image segmentation and time series prediction. We selected the best models according to machine learning metrics as well as meteorological metrics. All selected architectures showed significant improvements over persistence and the well-known U-Net surpasses AROME physical model.

Citations (24)

Summary

We haven't generated a summary for this paper yet.