Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skilful Precipitation Nowcasting Using NowcastNet (2311.17961v2)

Published 29 Nov 2023 in physics.ao-ph, cs.AI, and cs.LG

Abstract: Designing early warning system for precipitation requires accurate short-term forecasting system. Climate change has led to an increase in frequency of extreme weather events, and hence such systems can prevent disasters and loss of life. Managing such events remain a challenge for both public and private institutions. Precipitation nowcasting can help relevant institutions to better prepare for such events as they impact agriculture, transport, public health and safety, etc. Physics-based numerical weather prediction (NWP) is unable to perform well for nowcasting because of large computational turn-around time. Deep-learning based models on the other hand are able to give predictions within seconds. We use recently proposed NowcastNet, a physics-conditioned deep generative network, to forecast precipitation for different regions of Europe using satellite images. Both spatial and temporal transfer learning is done by forecasting for the unseen regions and year. Model makes realistic predictions and is able to outperform baseline for such a prediction task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ajitabh Kumar (5 papers)

Summary

We haven't generated a summary for this paper yet.