Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Decomposition for Massive MIMO Detection (2009.11172v2)

Published 23 Sep 2020 in cs.IT and math.IT

Abstract: Massive multiple-input multiple-output (MIMO) is a key technology for fifth generation (5G) communication system. MIMO symbol detection is one of the most computationally intensive tasks for a massive MIMO baseband receiver. In this paper, we analyze matrix decomposition algorithms for massive MIMO systems, which were traditionally used for small-scale MIMO detection due to their numerical stability and modular design. We present the computational complexity of linear detection mechanisms based on QR, Cholesky and LDL-decomposition algorithms for different massive MIMO configurations. We compare them with the state-of-art approximate inversion-based massive MIMO detection methods. The results provide important insights for system and very large-scale integration (VLSI) designers to select appropriate massive MIMO detection algorithms according to their requirement.

Citations (18)

Summary

We haven't generated a summary for this paper yet.