Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Model without Prior Distribution Matching (2009.11016v1)

Published 23 Sep 2020 in cs.CV

Abstract: Variational Autoencoder (VAE) and its variations are classic generative models by learning a low-dimensional latent representation to satisfy some prior distribution (e.g., Gaussian distribution). Their advantages over GAN are that they can simultaneously generate high dimensional data and learn latent representations to reconstruct the inputs. However, it has been observed that a trade-off exists between reconstruction and generation since matching prior distribution may destroy the geometric structure of data manifold. To mitigate this problem, we propose to let the prior match the embedding distribution rather than imposing the latent variables to fit the prior. The embedding distribution is trained using a simple regularized autoencoder architecture which preserves the geometric structure to the maximum. Then an adversarial strategy is employed to achieve a latent mapping. We provide both theoretical and experimental support for the effectiveness of our method, which alleviates the contradiction between topological properties' preserving of data manifold and distribution matching in latent space.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Cong Geng (9 papers)
  2. Jia Wang (163 papers)
  3. Li Chen (590 papers)
  4. Zhiyong Gao (17 papers)
Citations (1)