Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Concepts Described by Weight Aggregation Logic (2009.10574v1)

Published 22 Sep 2020 in cs.LO, cs.AI, and cs.LG

Abstract: We consider weighted structures, which extend ordinary relational structures by assigning weights, i.e. elements from a particular group or ring, to tuples present in the structure. We introduce an extension of first-order logic that allows to aggregate weights of tuples, compare such aggregates, and use them to build more complex formulas. We provide locality properties of fragments of this logic including Feferman-Vaught decompositions and a Gaifman normal form for a fragment called FOW1, as well as a localisation theorem for a larger fragment called FOWA1. This fragment can express concepts from various machine learning scenarios. Using the locality properties, we show that concepts definable in FOWA1 over a weighted background structure of at most polylogarithmic degree are agnostically PAC-learnable in polylogarithmic time after pseudo-linear time preprocessing.

Citations (11)

Summary

We haven't generated a summary for this paper yet.