Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Data Quality Evaluation using Probability Models (2009.06672v1)

Published 14 Sep 2020 in cs.LG and cs.CY

Abstract: This paper discusses an approach with machine-learning probability models to evaluate the difference between good and bad data quality in a dataset. A decision tree algorithm is used to predict data quality based on no domain knowledge of the datasets under examination. It is shown that for the data examined, the ability to predict the quality of data based on simple good/bad pre-labelled learning examples is accurate, however in general it may not be sufficient for useful production data quality assessment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.