Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Input Hessian Regularization of Neural Networks (2009.06571v1)

Published 14 Sep 2020 in cs.LG and stat.ML

Abstract: Regularizing the input gradient has shown to be effective in promoting the robustness of neural networks. The regularization of the input's Hessian is therefore a natural next step. A key challenge here is the computational complexity. Computing the Hessian of inputs is computationally infeasible. In this paper we propose an efficient algorithm to train deep neural networks with Hessian operator-norm regularization. We analyze the approach theoretically and prove that the Hessian operator norm relates to the ability of a neural network to withstand an adversarial attack. We give a preliminary experimental evaluation on the MNIST and FMNIST datasets, which demonstrates that the new regularizer can, indeed, be feasible and, furthermore, that it increases the robustness of neural networks over input gradient regularization.

Citations (12)

Summary

We haven't generated a summary for this paper yet.