Papers
Topics
Authors
Recent
Search
2000 character limit reached

On strong duality, theorems of the alternative, and projections in conic optimization

Published 14 Sep 2020 in math.OC | (2009.06550v3)

Abstract: A conic program is the problem of optimizing a linear function over a closed convex cone intersected with an affine preimage of another cone. We analyse three constraint qualifications, namely a Closedness CQ, Slater CQ, and Boundedness CQ (also called Clark-Duffin theorem), that are sufficient for achieving strong duality and show that the first implies the second which implies the third, and also give a more general form of the third CQ for conic problems. Furthermore, two consequences of strong duality are presented, the first being a theorem of the alternative on almost feasibility (also called weak infeasibility), and the second being an explicit description of the projection of conic sets onto linear subspaces, akin to using projection cones for polyhedral sets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.