Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretation of smartphone-captured radiographs utilizing a deep learning-based approach (2009.05951v1)

Published 13 Sep 2020 in cs.CV and cs.AI

Abstract: Recently, computer-aided diagnostic systems (CADs) that could automatically interpret medical images effectively have been the emerging subject of recent academic attention. For radiographs, several deep learning-based systems or models have been developed to study the multi-label diseases recognition tasks. However, none of them have been trained to work on smartphone-captured chest radiographs. In this study, we proposed a system that comprises a sequence of deep learning-based neural networks trained on the newly released CheXphoto dataset to tackle this issue. The proposed approach achieved promising results of 0.684 in AUC and 0.699 in average F1 score. To the best of our knowledge, this is the first published study that showed to be capable of processing smartphone-captured radiographs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.