Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Domain Adaptation via CycleGAN for White Matter Hyperintensity Segmentation in Multicenter MR Images (2009.04985v1)

Published 10 Sep 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Automatic segmentation of white matter hyperintensities in magnetic resonance images is of paramount clinical and research importance. Quantification of these lesions serve as a predictor for risk of stroke, dementia and mortality. During the last years, convolutional neural networks (CNN) specifically tailored for biomedical image segmentation have outperformed all previous techniques in this task. However, they are extremely data-dependent, and maintain a good performance only when data distribution between training and test datasets remains unchanged. When such distribution changes but we still aim at performing the same task, we incur in a domain adaptation problem (e.g. using a different MR machine or different acquisition parameters for training and test data). In this work, we explore the use of cycle-consistent adversarial networks (CycleGAN) to perform unsupervised domain adaptation on multicenter MR images with brain lesions. We aim at learning a mapping function to transform volumetric MR images between domains, which are characterized by different medical centers and MR machines with varying brand, model and configuration parameters. Our experiments show that CycleGAN allows us to reduce the Jensen-Shannon divergence between MR domains, enabling automatic segmentation with CNN models on domains where no labeled data was available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (25)

Summary

We haven't generated a summary for this paper yet.