Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Learning of Parameterized Uncertain Dynamical Environments with Finite-sample Guarantees (2009.02390v1)

Published 4 Sep 2020 in eess.SY and cs.SY

Abstract: We present a novel online learning algorithm for a class of unknown and uncertain dynamical environments that are fully observable. First, we obtain a novel probabilistic characterization of systems whose mean behavior is known but which are subject to additive, unknown subGaussian disturbances. This characterization relies on recent concentration of measure results and is given in terms of ambiguity sets. Second, we extend the results to environments whose mean behavior is also unknown but described by a parameterized class of possible mean behaviors. Our algorithm adapts the ambiguity set dynamically by learning the parametric dependence online, and retaining similar probabilistic guarantees with respect to the additive, unknown disturbance. We illustrate the results on a differential-drive robot subject to environmental uncertainty.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.