Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring (2009.02098v2)

Published 4 Sep 2020 in cs.LG, cs.AI, and stat.ML

Abstract: The contemporary process-aware information systems possess the capabilities to record the activities generated during the process execution. To leverage these process specific fine-granular data, process mining has recently emerged as a promising research discipline. As an important branch of process mining, predictive business process management, pursues the objective to generate forward-looking, predictive insights to shape business processes. In this study, we propose a conceptual framework sought to establish and promote understanding of decision-making environment, underlying business processes and nature of the user characteristics for developing explainable business process prediction solutions. Consequently, with regard to the theoretical and practical implications of the framework, this study proposes a novel local post-hoc explanation approach for a deep learning classifier that is expected to facilitate the domain experts in justifying the model decisions. In contrary to alternative popular perturbation-based local explanation approaches, this study defines the local regions from the validation dataset by using the intermediate latent space representations learned by the deep neural networks. To validate the applicability of the proposed explanation method, the real-life process log data delivered by the Volvo IT Belgium's incident management system are used.The adopted deep learning classifier achieves a good performance with the Area Under the ROC Curve of 0.94. The generated local explanations are also visualized and presented with relevant evaluation measures that are expected to increase the users' trust in the black-box-model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nijat Mehdiyev (6 papers)
  2. Peter Fettke (23 papers)
Citations (51)