Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Interpretability for Predictive Process Analytics (1912.10558v3)

Published 22 Dec 2019 in cs.LG and stat.ML

Abstract: Modern predictive analytics underpinned by machine learning techniques has become a key enabler to the automation of data-driven decision making. In the context of business process management, predictive analytics has been applied to making predictions about the future state of an ongoing business process instance, for example, when will the process instance complete and what will be the outcome upon completion. Machine learning models can be trained on event log data recording historical process execution to build the underlying predictive models. Multiple techniques have been proposed so far which encode the information available in an event log and construct input features required to train a predictive model. While accuracy has been a dominant criterion in the choice of various techniques, they are often applied as a black-box in building predictive models. In this paper, we derive explanations using interpretable machine learning techniques to compare and contrast the suitability of multiple predictive models of high accuracy. The explanations allow us to gain an understanding of the underlying reasons for a prediction and highlight scenarios where accuracy alone may not be sufficient in assessing the suitability of techniques used to encode event log data to features used by a predictive model. Findings from this study motivate the need and importance to incorporate interpretability in predictive process analytics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Renuka Sindhgatta (14 papers)
  2. Chun Ouyang (26 papers)
  3. Catarina Moreira (52 papers)
Citations (2)