Evaluation of Deep Convolutional Generative Adversarial Networks for data augmentation of chest X-ray images (2009.01181v1)
Abstract: Medical image datasets are usually imbalanced, due to the high costs of obtaining the data and time-consuming annotations. Training deep neural network models on such datasets to accurately classify the medical condition does not yield desired results and often over-fits the data on majority class samples. In order to address this issue, data augmentation is often performed on training data by position augmentation techniques such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue to increase the dataset sizes. These augmentation techniques are not guaranteed to be advantageous in domains with limited data, especially medical image data, and could lead to further overfitting. In this work, we performed data augmentation on the Chest X-rays dataset through generative modeling (deep convolutional generative adversarial network) which creates artificial instances retaining similar characteristics to the original data and evaluation of the model resulted in Fr\'echet Distance of Inception (FID) score of 1.289.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.