Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance of GAN-based augmentation for deep learning COVID-19 image classification (2304.09067v2)

Published 18 Apr 2023 in eess.IV, cs.CV, and physics.med-ph

Abstract: The biggest challenge in the application of deep learning to the medical domain is the availability of training data. Data augmentation is a typical methodology used in machine learning when confronted with a limited data set. In a classical approach image transformations i.e. rotations, cropping and brightness changes are used. In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set. After assessing the quality of generated images they are used to increase the training data set improving its balance between classes. We consider the multi-class classification problem of chest X-ray images including the COVID-19 positive class that hasn't been yet thoroughly explored in the literature. Results of transfer learning-based classification of COVID-19 chest X-ray images are presented. The performance of several deep convolutional neural network models is compared. The impact on the detection performance of classical image augmentations i.e. rotations, cropping, and brightness changes are studied. Furthermore, classical image augmentation is compared with GAN-based augmentation. The most accurate model is an EfficientNet-B0 with an accuracy of 90.2 percent, trained on a dataset with a simple class balancing. The GAN augmentation approach is found to be subpar to classical methods for the considered dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. T. Kadir and F. Gleeson, Translational Lung Cancer Research 7, 304 (2018).
  2. M. M. Jassim and M. M. Jaber, Journal of Intelligent Systems 31, 944 (2022).
  3. L. Hall, D. Goldgof, R. Paul,  and G. M. Goldgof, “Finding COVID-19 from Chest X-rays using Deep Learning on a Small Dataset,”  (2020).
  4. O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang, W. Ji, A. Bernheim,  and E. Siegel, “Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis,”  (2020).
  5. K. Medhi, M. Jamil,  and M. I. Hussain, “Automatic detection of covid-19 infection from chest x-ray using deep learning,”  (2020).
  6. S. Rajaraman and S. Antani, “Training deep learning algorithms with weakly labeled pneumonia chest x-ray data for covid-19 detection,”  (2020).
  7. N. M. Elshennawy and D. M. Ibrahim, Diagnostics (Basel) 10, 649 (2020).
  8. F. Ucar and D. Korkmaz, Medical Hypotheses 140, 109761 (2020).
  9. C. Shorten and T. M. Khoshgoftaar, Journal of Big Data 6, 60 (2019).
  10. “Covid-19 radiography database,”  (2022).
  11. M. d. l. I. Vayá, J. M. Saborit, J. A. Montell, A. Pertusa, A. Bustos, M. Cazorla, J. Galant, X. Barber, D. Orozco-Beltrán, F. García-García, M. Caparrós, G. González,  and J. M. Salinas, “Bimcv covid-19+: a large annotated dataset of rx and ct images from covid-19 patients,”  (2020).
  12. H. B. Winther, H. Laser, S. Gerbel, S. K. Maschke, J. B. Hinrichs, J. Vogel-Claussen, F. K. Wacker, M. M. Höper,  and B. C. Meyer, “Dataset: Covid-19 image repository,”  (2020).
  13. “Covid-19 chest x-ray dataset,”  (2020), italian Society of Medical and Interventional Radiology (SIRM).
  14. J. P. Cohen, P. Morrison,  and L. Dao, “Covid-19 image data collection,”  (2020a), 2003.11597 .
  15. “Rsna pneumonia detection challenge,”  (2018).
  16. M. Fréchet, C. R. Acad. Sci. Paris 244, 689 (1957).
  17. D. Dowson and B. Landau, Journal of Multivariate Analysis 12, 450 (1982).
  18. T. Karras, T. Aila, S. Laine,  and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,”  (2017), 1710.10196 .
  19. M. Tan and Q. Le, in Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 97, edited by K. Chaudhuri and R. Salakhutdinov (PMLR, 2019) pp. 6105–6114, 1905.11946 .
  20. F. Chollet et al., “Keras,” https://keras.io (2015).
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (7)