Papers
Topics
Authors
Recent
Search
2000 character limit reached

agtboost: Adaptive and Automatic Gradient Tree Boosting Computations

Published 28 Aug 2020 in stat.ML, cs.LG, stat.AP, and stat.CO | (2008.12625v1)

Abstract: agtboost is an R package implementing fast gradient tree boosting computations in a manner similar to other established frameworks such as xgboost and LightGBM, but with significant decreases in computation time and required mathematical and technical knowledge. The package automatically takes care of split/no-split decisions and selects the number of trees in the gradient tree boosting ensemble, i.e., agtboost adapts the complexity of the ensemble automatically to the information in the data. All of this is done during a single training run, which is made possible by utilizing developments in information theory for tree algorithms {\tt arXiv:2008.05926v1 [stat.ME]}. agtboost also comes with a feature importance function that eliminates the common practice of inserting noise features. Further, a useful model validation function performs the Kolmogorov-Smirnov test on the learned distribution.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.