Papers
Topics
Authors
Recent
Search
2000 character limit reached

A copula transformation in multivariate mixed discrete-continuous models

Published 27 Aug 2020 in stat.ME and stat.AP | (2008.12411v1)

Abstract: Copulas allow a flexible and simultaneous modeling of complicated dependence structures together with various marginal distributions. Especially if the density function can be represented as the product of the marginal density functions and the copula density function, this leads to both an intuitive interpretation of the conditional distribution and convenient estimation procedures. However, this is no longer the case for copula models with mixed discrete and continuous marginal distributions, because the corresponding density function cannot be decomposed so nicely. In this paper, we introduce a copula transformation method that allows to represent the density function of a distribution with mixed discrete and continuous marginals as the product of the marginal probability mass/density functions and the copula density function. With the proposed method, conditional distributions can be described analytically and the computational complexity in the estimation procedure can be reduced depending on the type of copula used.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.