Papers
Topics
Authors
Recent
Search
2000 character limit reached

Factor copula models for mixed data

Published 17 Jul 2019 in stat.ME | (1907.07395v2)

Abstract: We develop factor copula models for analysing the dependence among mixed continuous and discrete responses. Factor copula models are canonical vine copulas that involve both observed and latent variables, hence they allow tail, asymmetric and non-linear dependence. They can be explained as conditional independence models with latent variables that don't necessarily have an additive latent structure. We focus on important issues that would interest the social data analyst, such as model selection and goodness-of-fit. Our general methodology is demonstrated with an extensive simulation study and illustrated by re-analysing three mixed response datasets. Our study suggests that there can be a substantial improvement over the standard factor model for mixed data and makes the argument for moving to factor copula models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.