Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalized soap bubbles and the topology of manifolds with positive scalar curvature (2008.11888v4)

Published 27 Aug 2020 in math.DG and math.GT

Abstract: We prove that for $n\in {4,5}$, a closed aspherical $n$-manifold does not admit a Riemannian metric with positive scalar curvature. Additionally, we show that for $n\leq 7$, the connected sum of a $n$-torus with an arbitrary manifold does not admit a complete metric of positive scalar curvature. When combined with forthcoming contributions by Lesourd--Unger--Yau, this proves that the Schoen--Yau Liouville theorem holds for all locally conformally flat manifolds with non-negative scalar curvature. A key tool in these results are generalized soap bubbles -- surfaces that are stationary for prescribed-mean-curvature functionals (also called $\mu$-bubbles).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.