Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic stability of solitary waves for the $1d$ NLS with an attractive delta potential (2008.11645v1)

Published 26 Aug 2020 in math.AP

Abstract: We consider the one-dimensional nonlinear Schr\"odinger equation with an attractive delta potential and mass-supercritical nonlinearity. This equation admits a one-parameter family of solitary wave solutions in both the focusing and defocusing cases. We establish asymptotic stability for all solitary waves satisfying a suitable spectral condition, namely, that the linearized operator around the solitary wave has a two-dimensional generalized kernel and no other eigenvalues or resonances. In particular, we extend our previous result beyond the regime of small solitary waves and extend the results of Fukuizumi-Ohta-Ozawa and Kaminaga-Ohta from orbital to asymptotic stability for a suitable family of solitary waves.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.