Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instability of the solitary waves for the 1d NLS with an attrictive delta potential in the degenerate case (1910.11150v1)

Published 23 Oct 2019 in math.AP

Abstract: In this paper, we show the orbital instability of the solitary waves $Q_{\Omega}e{i\Omega t}$ of the 1d NLS with an attractive delta potential ($\gamma>0$) \begin{equation*} \i u_t+u_{xx}+\gamma\delta u+\abs{u}{p-1}u=0, \; p>5, \end{equation*} where $\Omega=\Omega(p,\gamma)>\frac{\gamma2}{4}$ is the critical oscillation number and determined by \begin{equation*} \frac{p-5}{p-1} \int_{ \arctanh\sts{ \frac{\gamma}{2\sqrt{\Omega}} } }{+\infty} \sech{\frac{4}{p-1}}\sts{y}\d y = { \frac{\gamma}{ 2\sqrt{\Omega} } }\sts{ 1-\frac{\gamma2}{4\Omega} }{-\frac{p-3}{p-1}} \Longleftrightarrow \mathbf{d}''(\Omega) =0. \end{equation*} The classical convex method and Grillakis-Shatah-Strauss's stability approach in \cite{A2009Stab, GSS1987JFA1} don't work in this degenerate case, and the argument here is motivated by those in \cite{CP2003CPAM, MM2001GAFA, M2012JFA, MTX2018, O2011JFA}. The main ingredients are to construct the unstable second order approximation near the solitary wave $Q_{\Omega}e{i\Omega t}$ on the level set $\Mcal(Q_{\Omega})$ accoding to the degenerate structure of the Hamiltonian and to construct the refined Virial identity to show the orbital instability of the solitary waves $Q_{\Omega}e{i\Omega t}$ in the energy space. Our result is the complement of the results in \cite{FOO2008AIHP} in the degenerate case.

Summary

We haven't generated a summary for this paper yet.