Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensuring Monotonic Policy Improvement in Entropy-regularized Value-based Reinforcement Learning (2008.10806v1)

Published 25 Aug 2020 in cs.LG, cs.AI, and stat.ML

Abstract: This paper aims to establish an entropy-regularized value-based reinforcement learning method that can ensure the monotonic improvement of policies at each policy update. Unlike previously proposed lower-bounds on policy improvement in general infinite-horizon MDPs, we derive an entropy-regularization aware lower bound. Since our bound only requires the expected policy advantage function to be estimated, it is scalable to large-scale (continuous) state-space problems. We propose a novel reinforcement learning algorithm that exploits this lower-bound as a criterion for adjusting the degree of a policy update for alleviating policy oscillation. We demonstrate the effectiveness of our approach in both discrete-state maze and continuous-state inverted pendulum tasks using a linear function approximator for value estimation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.