Learning Disentangled Expression Representations from Facial Images
Abstract: Face images are subject to many different factors of variation, especially in unconstrained in-the-wild scenarios. For most tasks involving such images, e.g. expression recognition from video streams, having enough labeled data is prohibitively expensive. One common strategy to tackle such a problem is to learn disentangled representations for the different factors of variation of the observed data using adversarial learning. In this paper, we use a formulation of the adversarial loss to learn disentangled representations for face images. The used model facilitates learning on single-task datasets and improves the state-of-the-art in expression recognition with an accuracy of60.53%on the AffectNetdataset, without using any additional data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.