Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Deep Reinforcement Learning enabled Computation Resource Allocation in a Vehicular Cloud Network (2008.06464v2)

Published 14 Aug 2020 in cs.AI and cs.MA

Abstract: In this paper, we investigate the computational resource allocation problem in a distributed Ad-Hoc vehicular network with no centralized infrastructure support. To support the ever increasing computational needs in such a vehicular network, the distributed virtual cloud network (VCN) is formed, based on which a computational resource sharing scheme through offloading among nearby vehicles is proposed. In view of the time-varying computational resource in VCN, the statistical distribution characteristics for computational resource are analyzed in detail. Thereby, a resource-aware combinatorial optimization objective mechanism is proposed. To alleviate the non-stationary environment caused by the typically multi-agent environment in VCN, we adopt a centralized training and decentralized execution framework. In addition, for the objective optimization problem, we model it as a Markov game and propose a DRL based multi-agent deep deterministic reinforcement learning (MADDPG) algorithm to solve it. Interestingly, to overcome the dilemma of lacking a real central control unit in VCN, the allocation is actually completed on the vehicles in a distributed manner. The simulation results are presented to demonstrate our scheme's effectiveness.

Citations (6)

Summary

We haven't generated a summary for this paper yet.