Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Inter- and Intra-Band Loss for Pansharpening Convolutional Neural Networks (2008.05133v1)

Published 12 Aug 2020 in eess.IV and cs.CV

Abstract: Pansharpening aims to fuse panchromatic and multispectral images from the satellite to generate images with both high spatial and spectral resolution. With the successful applications of deep learning in the computer vision field, a lot of scholars have proposed many convolutional neural networks (CNNs) to solve the pansharpening task. These pansharpening networks focused on various distinctive structures of CNNs, and most of them are trained by L2 loss between fused images and simulated desired multispectral images. However, L2 loss is designed to directly minimize the difference of spectral information of each band, which does not consider the inter-band relations in the training process. In this letter, we propose a novel inter- and intra-band (IIB) loss to overcome the drawback of original L2 loss. Our proposed IIB loss can effectively preserve both inter- and intra-band relations and can be directly applied to different pansharpening CNNs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.