Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adv-watermark: A Novel Watermark Perturbation for Adversarial Examples (2008.01919v2)

Published 5 Aug 2020 in cs.CR and cs.MM

Abstract: Recent research has demonstrated that adding some imperceptible perturbations to original images can fool deep learning models. However, the current adversarial perturbations are usually shown in the form of noises, and thus have no practical meaning. Image watermark is a technique widely used for copyright protection. We can regard image watermark as a king of meaningful noises and adding it to the original image will not affect people's understanding of the image content, and will not arouse people's suspicion. Therefore, it will be interesting to generate adversarial examples using watermarks. In this paper, we propose a novel watermark perturbation for adversarial examples (Adv-watermark) which combines image watermarking techniques and adversarial example algorithms. Adding a meaningful watermark to the clean images can attack the DNN models. Specifically, we propose a novel optimization algorithm, which is called Basin Hopping Evolution (BHE), to generate adversarial watermarks in the black-box attack mode. Thanks to the BHE, Adv-watermark only requires a few queries from the threat models to finish the attacks. A series of experiments conducted on ImageNet and CASIA-WebFace datasets show that the proposed method can efficiently generate adversarial examples, and outperforms the state-of-the-art attack methods. Moreover, Adv-watermark is more robust against image transformation defense methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiaojun Jia (85 papers)
  2. Xingxing Wei (60 papers)
  3. Xiaochun Cao (177 papers)
  4. Xiaoguang Han (118 papers)
Citations (73)

Summary

We haven't generated a summary for this paper yet.