Papers
Topics
Authors
Recent
2000 character limit reached

Deep Reinforcement Learning using Cyclical Learning Rates

Published 31 Jul 2020 in cs.LG and stat.ML | (2008.01171v1)

Abstract: Deep Reinforcement Learning (DRL) methods often rely on the meticulous tuning of hyperparameters to successfully resolve problems. One of the most influential parameters in optimization procedures based on stochastic gradient descent (SGD) is the learning rate. We investigate cyclical learning and propose a method for defining a general cyclical learning rate for various DRL problems. In this paper we present a method for cyclical learning applied to complex DRL problems. Our experiments show that, utilizing cyclical learning achieves similar or even better results than highly tuned fixed learning rates. This paper presents the first application of cyclical learning rates in DRL settings and is a step towards overcoming manual hyperparameter tuning.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.