Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applying Cyclical Learning Rate to Neural Machine Translation (2004.02401v1)

Published 6 Apr 2020 in cs.LG, cs.CL, and stat.ML

Abstract: In training deep learning networks, the optimizer and related learning rate are often used without much thought or with minimal tuning, even though it is crucial in ensuring a fast convergence to a good quality minimum of the loss function that can also generalize well on the test dataset. Drawing inspiration from the successful application of cyclical learning rate policy for computer vision related convolutional networks and datasets, we explore how cyclical learning rate can be applied to train transformer-based neural networks for neural machine translation. From our carefully designed experiments, we show that the choice of optimizers and the associated cyclical learning rate policy can have a significant impact on the performance. In addition, we establish guidelines when applying cyclical learning rates to neural machine translation tasks. Thus with our work, we hope to raise awareness of the importance of selecting the right optimizers and the accompanying learning rate policy, at the same time, encourage further research into easy-to-use learning rate policies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.