Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Compositional Neural Programs for Continuous Control (2007.13363v2)

Published 27 Jul 2020 in cs.AI

Abstract: We propose a novel solution to challenging sparse-reward, continuous control problems that require hierarchical planning at multiple levels of abstraction. Our solution, dubbed AlphaNPI-X, involves three separate stages of learning. First, we use off-policy reinforcement learning algorithms with experience replay to learn a set of atomic goal-conditioned policies, which can be easily repurposed for many tasks. Second, we learn self-models describing the effect of the atomic policies on the environment. Third, the self-models are harnessed to learn recursive compositional programs with multiple levels of abstraction. The key insight is that the self-models enable planning by imagination, obviating the need for interaction with the world when learning higher-level compositional programs. To accomplish the third stage of learning, we extend the AlphaNPI algorithm, which applies AlphaZero to learn recursive neural programmer-interpreters. We empirically show that AlphaNPI-X can effectively learn to tackle challenging sparse manipulation tasks, such as stacking multiple blocks, where powerful model-free baselines fail.

Citations (4)

Summary

We haven't generated a summary for this paper yet.